Files
viralfactory/src/engines/Pipelines/ScriptedVideoPipeline.py

270 lines
10 KiB
Python
Raw Normal View History

import os
import gradio as gr
import moviepy as mp
from concurrent.futures import ThreadPoolExecutor, as_completed
from . import BasePipeline
from ... import engines
from ...chore import GenerationContext
from ...utils.prompting import get_prompt, get_prompts
class ScriptedVideoPipeline(BasePipeline):
name = "Scripted Long Form Pipeline"
description = (
"A pipeline that generates a long form video based on a script instruction."
)
num_options = 5
def __init__(self, options: list) -> None:
self.user_instructions = options[0]
self.assets_instructions = options[1]
# ratio = options[2] we don't need this
self.width = options[3]
self.height = options[4]
super().__init__()
def get_asset(self, asset: dict[str, str | float], i) -> mp.VideoClip:
if asset["type"] == "stock":
return self.ctx.stockimageengine.get(
asset["query"], asset["start"], asset["end"], i
)
elif asset["type"] == "ai":
return self.ctx.aiimageengine.generate(
asset["prompt"], asset["start"], asset["end"], i
)
def get_assets_concurrent(self, assets: list[dict[str, str]]) -> list[mp.VideoClip]:
results = []
with ThreadPoolExecutor() as executor:
2024-05-17 11:26:45 +02:00
futures = [
executor.submit(self.get_asset, asset, i)
for i, asset in enumerate(assets)
]
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
gr.Warning(f"Failed to generate an asset: {e}")
return results
def launch(self, ctx: GenerationContext) -> None:
ctx.progress(0.1, "Loading settings...")
ctx.setup_dir()
ctx.width = self.width
ctx.height = self.height
prompts = get_prompts("long_form", by_file_location=__file__)
ctx.progress(0.2, "Generating chapters...")
system = prompts["chapters"]["system"]
chat = prompts["chapters"]["chat"]
chat = chat.replace("{user_instructions}", str(self.user_instructions))
chapters: list[dict[str, str]] = ctx.powerfulllmengine.generate(
system_prompt=system,
chat_prompt=chat,
json_mode=True,
temperature=1,
max_tokens=4096,
)["chapters"]
ctx.script = ""
text_audio = []
ctx.duration = 0
for i, chapter in enumerate(chapters):
ctx.progress(0.2, f"Generating chapter: {chapter['title']}...")
system = prompts["writer"]["system"]
chat = prompts["writer"]["chat"]
chat = (
chat.replace("{user_instructions}", str(self.user_instructions))
.replace("{chapter_title}", chapter["title"])
.replace("{chapter_instructions}", chapter["explanation"])
)
script = ctx.powerfulllmengine.generate(
system_prompt=system,
chat_prompt=chat,
temperature=1,
max_tokens=4096,
json_mode=True,
)["chapter"]
ctx.script += script
ctx.script += "\n"
ctx.progress(0.3, "Synthesizing voice...")
duration = ctx.ttsengine.synthesize(
script, ctx.get_file_path(f"tts_{i}.wav")
)
audioclip = mp.AudioFileClip(ctx.get_file_path(f"tts_{i}.wav"))
audioclip = audioclip.with_start(ctx.duration)
text_audio.append(audioclip)
ctx.progress(0.2, f"Transcribing chapter: {chapter['title']}...")
timed_script = ctx.transcriptionengine.transcribe(
ctx.get_file_path(f"tts_{i}.wav"), fast=False, words=True
)
sentence_split_script = []
current_sentence = None
for word in timed_script.copy():
if current_sentence is None:
# Initialize the first sentence
current_sentence = {
"text": word["text"],
"end": word["end"],
"start": word["start"],
}
elif word["text"].endswith((".", "!", "?")):
# Add the word to the current sentence and finalize it
current_sentence["text"] += f" {word['text']}"
current_sentence["end"] = word["end"]
sentence_split_script.append(current_sentence)
current_sentence = None # Prepare to start a new sentence
else:
# Continue adding words to the current sentence
current_sentence["text"] += f" {word['text']}"
current_sentence["end"] = word["end"]
# If the last sentence didn't end with a punctuation mark
if current_sentence is not None:
sentence_split_script.append(current_sentence)
ctx.progress(0.2, f"Generating video for chapter: {chapter['title']}...")
system = prompts["imager"]["system"]
chat = prompts["imager"]["chat"]
chat = chat.replace("{user_instructions}", str(self.user_instructions))
chat = chat.replace("{assets_instructions}", str(self.assets_instructions))
chat = chat.replace("{video_transcript}", str(sentence_split_script))
assets: list[dict[str, str | float]] = ctx.powerfulllmengine.generate(
system_prompt=system,
chat_prompt=chat,
temperature=1,
max_tokens=4096,
json_mode=True,
)["assets"]
for asset in assets:
asset["start"] += ctx.duration
asset["end"] += ctx.duration
ctx.progress(0.2, f"Generating assets for chapter: {chapter['title']}...")
clips = self.get_assets_concurrent(assets)
ctx.index_5.extend(clips)
ctx.duration += duration + 0.5
ctx.audio.extend(text_audio)
if not isinstance(ctx.audiobackgroundengine, engines.NoneEngine):
ctx.progress(0.6, "Generating audio background...")
ctx.audio.append(ctx.audiobackgroundengine.get_background())
if not isinstance(ctx.backgroundengine, engines.NoneEngine):
ctx.progress(0.65, "Generating background...")
ctx.index_0.append(ctx.backgroundengine.get_background())
ctx.progress(0.7, "Rendering video...")
clips = [
*ctx.index_0,
*ctx.index_1,
*ctx.index_2,
*ctx.index_3,
*ctx.index_4,
*ctx.index_5,
*ctx.index_6,
*ctx.index_7,
*ctx.index_8,
*ctx.index_9,
]
audio = mp.CompositeAudioClip(ctx.audio)
clip = (
mp.CompositeVideoClip(clips, size=(ctx.width, ctx.height))
.with_duration(ctx.duration)
.with_audio(audio)
)
clip.write_videofile(
ctx.get_file_path("final.mp4"), fps=60, threads=16, codec="av1_nvenc"
)
system = prompts["description"]["system"]
chat = prompts["description"]["chat"]
chat.replace("{script}", ctx.script)
metadata = ctx.powerfulllmengine.generate(
system_prompt=system, chat_prompt=chat, json_mode=True, temperature=1
)
ctx.title = metadata["title"]
ctx.description = metadata["description"]
ctx.description = ctx.description + "\n" + ctx.credits
ctx.progress(0.9, "Uploading video...")
for engine in ctx.uploadengine:
try:
engine.upload(
ctx.title, ctx.description, ctx.get_file_path("final.mp4")
)
except Exception as e:
gr.Warning(f"{engine.name} failed to upload the video.")
ctx.progress(0.99, "Storing in database...")
ctx.store_in_db()
ctx.progress(1, "Done!")
command = "start" if os.name == "nt" else "open"
os.system(f"{command} {os.path.abspath(ctx.dir)}")
@classmethod
def get_options(cls):
def change_resolution(chosen_ratio: str) -> list[gr.update]:
match chosen_ratio:
case "1920x1080":
return [
gr.update(value=1920, visible=False),
gr.update(value=1080, visible=False),
]
case "1080x1920":
return [
gr.update(value=1080, visible=False),
gr.update(value=1920, visible=False),
]
case "1280x720":
return [
gr.update(value=1280, visible=False),
gr.update(value=720, visible=False),
]
case "720x1280":
return [
gr.update(value=720, visible=False),
gr.update(value=1280, visible=False),
]
case "custom":
return [gr.update(visible=True), gr.update(visible=True)]
with gr.Row():
ratio = gr.Dropdown(
choices=["1920x1080", "1080x1920", "1280x720", "720x1280", "custom"],
label="Resolution",
)
width = gr.Number(
value=1080, minimum=720, maximum=3840, label="Width", step=1
)
height = gr.Number(
value=1920, minimum=720, maximum=3840, label="Height", step=1
)
ratio.change(change_resolution, inputs=[ratio], outputs=[width, height])
return [
gr.Textbox(
lines=4,
max_lines=6,
label="Video instructions",
info="Explain what the video should be about, how many chapters, and any specific instructions.",
),
gr.Textbox(
lines=4,
max_lines=6,
label="Assets only instructions",
info="Explain how the assets should be used in the video. When, how many, and of what type (stock images, AI or both)",
),
ratio,
width,
height,
]