Files
viralfactory/src/engines/Pipelines/ScriptedVideoPipeline.py

166 lines
5.8 KiB
Python
Raw Normal View History

import os
import gradio as gr
import moviepy as mp
from . import BasePipeline
from ... import engines
from ...chore import GenerationContext
from ...utils.prompting import get_prompt, get_prompts
class ScriptedVideoPipeline(BasePipeline):
name = "Scripted Long Form Pipeline"
description = (
"A pipeline that generates a long form video based on a script instruction."
)
num_options = 2
def __init__(self, options: list) -> None:
self.user_instructions = options[0]
self.assets_instructions = options[1]
super().__init__()
def launch(self, ctx: GenerationContext) -> None:
ctx.progress(0.1, "Loading settings...")
ctx.setup_dir()
if not isinstance(ctx.settingsengine, engines.NoneEngine):
ctx.settingsengine.load()
prompts = get_prompts("long_form", by_file_location=__file__)
ctx.progress(0.2, "Generating chapters...")
system = prompts["chapters"]["system"]
chat = prompts["chapters"]["chat"]
chat = chat.replace("{user_instructions}", str(self.user_instructions))
chapters: list[dict[str, str]] = ctx.powerfulllmengine.generate(
system_prompt=system,
chat_prompt=chat,
json_mode=True,
temperature=1,
max_tokens=4096,
)["chapters"]
ctx.script = ""
for chapter in chapters:
ctx.progress(0.2, f"Generating chapter: {chapter['title']}...")
system = prompts["writer"]["system"]
chat = prompts["writer"]["chat"]
chat = (
chat.replace("{user_instructions}", str(self.user_instructions))
.replace("{chapter_title}", chapter["title"])
.replace("{chapter_instructions}", chapter["explanation"])
)
ctx.script += ctx.powerfulllmengine.generate(
system_prompt=system,
chat_prompt=chat,
temperature=1,
max_tokens=4096,
json_mode=True,
)["chapter"]
ctx.script += "\n"
ctx.progress(0.3, "Synthesizing voice...")
ctx.duration = ctx.ttsengine.synthesize(
ctx.script, ctx.get_file_path("tts.wav")
)
ctx.audio.append(mp.AudioFileClip(ctx.get_file_path("tts.wav")))
ctx.progress(0.4, "Transcribing audio...")
ctx.timed_script = ctx.transcriptionengine.transcribe(
ctx.get_file_path("tts.wav"), fast=False, words=True
)
ctx.progress(0.5, "Generating images...")
system = prompts["imager"]["system"]
chat = prompts["imager"]["chat"]
chat = chat.replace("{user_instructions}", str(self.user_instructions))
chat = chat.replace("{assets_instructions}", str(self.assets_instructions))
chat = chat.replace("{video_transcript}", str(ctx.timed_script))
assets: list[dict[str, str | float]] = ctx.powerfulllmengine.generate(
2024-04-21 22:00:06 +02:00
system_prompt=system,
chat_prompt=chat,
temperature=1,
max_tokens=4096,
json_mode=True,
)["assets"]
for asset in assets:
if asset["type"] == "stock":
ctx.index_4.append(
ctx.stockimageengine.get(
asset["query"], asset["start"], asset["end"]
)
)
elif asset["type"] == "ai":
ctx.index_5.append(
ctx.aiimageengine.generate(
asset["prompt"], asset["start"], asset["end"]
)
)
if not isinstance(ctx.audiobackgroundengine, engines.NoneEngine):
ctx.progress(0.45, "Generating audio background...")
ctx.audio.append(ctx.audiobackgroundengine.get_background())
ctx.progress(0.7, "Rendering video...")
clips = [
*ctx.index_0,
*ctx.index_1,
*ctx.index_2,
*ctx.index_3,
*ctx.index_4,
*ctx.index_5,
*ctx.index_6,
*ctx.index_7,
*ctx.index_8,
*ctx.index_9,
]
audio = mp.CompositeAudioClip(ctx.audio)
clip = (
mp.CompositeVideoClip(clips, size=(ctx.width, ctx.height))
.with_duration(ctx.duration)
.with_audio(audio)
)
clip.write_videofile(
ctx.get_file_path("final.mp4"), fps=60, threads=4, codec="h264_nvenc"
)
system = prompts["description"]["system"]
chat = prompts["description"]["chat"]
chat.replace("{script}", ctx.script)
metadata = ctx.powerfulllmengine.generate(
system_prompt=system, chat_prompt=chat, json_mode=True, temperature=1
)
ctx.title = metadata["title"]
ctx.description = metadata["description"]
ctx.description = ctx.description + "\n" + ctx.credits
ctx.progress(0.9, "Uploading video...")
for engine in ctx.uploadengine:
try:
engine.upload(
ctx.title, ctx.description, ctx.get_file_path("final.mp4")
)
except Exception as e:
print(e)
gr.Warning(f"{engine.name} failed to upload the video.")
ctx.progress(0.99, "Storing in database...")
ctx.store_in_db()
ctx.progress(1, "Done!")
command = "start" if os.name == "nt" else "open"
os.system(f"{command} {os.path.abspath(ctx.dir)}")
@classmethod
def get_options(cls):
return [
gr.Textbox(
lines=4,
max_lines=6,
label="Video instructions",
),
gr.Textbox(
lines=4,
max_lines=6,
label="Assets only instructions",
),
]