mirror of
https://github.com/Paillat-dev/viralfactory.git
synced 2026-01-03 01:34:54 +00:00
🚀 Maaany things
This commit is contained in:
57
src/engines/LLMEngine/AnthropicLLMEngine.py
Normal file
57
src/engines/LLMEngine/AnthropicLLMEngine.py
Normal file
@@ -0,0 +1,57 @@
|
||||
import anthropic
|
||||
import gradio as gr
|
||||
import orjson
|
||||
|
||||
from .BaseLLMEngine import BaseLLMEngine
|
||||
|
||||
# Assuming these are the models supported by Anthropics that you wish to include
|
||||
ANTHROPIC_POSSIBLE_MODELS = [
|
||||
"claude-2.1",
|
||||
# Add more models as needed
|
||||
]
|
||||
|
||||
class AnthropicsLLMEngine(BaseLLMEngine):
|
||||
num_options = 1
|
||||
name = "Anthropics"
|
||||
description = "Anthropics language model engine."
|
||||
|
||||
def __init__(self, options: list) -> None:
|
||||
self.model = options[0]
|
||||
self.client = anthropic.Anthropic(api_key="YourAnthropicAPIKeyHere") # Ensure API key is securely managed
|
||||
super().__init__()
|
||||
|
||||
def generate(self, system_prompt: str, chat_prompt: str, max_tokens: int = 1024, temperature: float = 1.0, json_mode: bool = False, top_p: float = 1, frequency_penalty: float = 0, presence_penalty: float = 0) -> str | dict:
|
||||
# Note: Adjust the parameters as per Anthropics API capabilities
|
||||
prompt = f"""{anthropic.HUMAN_PROMPT} {system_prompt} {anthropic.HUMAN_PROMPT} {chat_prompt} {anthropic.AI_PROMPT}"""
|
||||
if json_mode:
|
||||
# anthopic does not officially support JSON mode, but we can bias the output towards a JSON-like format
|
||||
prompt += " {"
|
||||
response: anthropic.types.Completion = self.client.completions.create(
|
||||
max_tokens_to_sample=max_tokens,
|
||||
prompt=prompt,
|
||||
model=self.model,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
frequency_penalty=frequency_penalty,
|
||||
)
|
||||
|
||||
content = response.completion
|
||||
if json_mode:
|
||||
#we add back the opening curly brace wich is not included in the response since it is in the prompt
|
||||
content = "{" + content
|
||||
#we remove everything after the last closing curly brace
|
||||
content = content[:content.rfind("}") + 1]
|
||||
return orjson.loads(content)
|
||||
else:
|
||||
return content
|
||||
|
||||
@classmethod
|
||||
def get_options(cls) -> list:
|
||||
return [
|
||||
gr.Dropdown(
|
||||
label="Model",
|
||||
choices=ANTHROPIC_POSSIBLE_MODELS,
|
||||
max_choices=1,
|
||||
value=ANTHROPIC_POSSIBLE_MODELS[0]
|
||||
)
|
||||
]
|
||||
@@ -6,5 +6,5 @@ import openai
|
||||
class BaseLLMEngine(BaseEngine):
|
||||
|
||||
@abstractmethod
|
||||
def generate(self, system_prompt: str, chat_prompt: str, max_tokens: int, temperature: float, top_p: float, frequency_penalty: float, presence_penalty: float) -> str:
|
||||
def generate(self, system_prompt: str, chat_prompt: str, max_tokens: int, temperature: float, top_p: float, frequency_penalty: float, presence_penalty: float) -> str | dict:
|
||||
pass
|
||||
@@ -1,49 +1,43 @@
|
||||
import openai
|
||||
import anthropic
|
||||
import gradio as gr
|
||||
import orjson
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from .BaseLLMEngine import BaseLLMEngine
|
||||
|
||||
OPENAI_POSSIBLE_MODELS = [
|
||||
"gpt-3.5-turbo-0125",
|
||||
"gpt-4-turbo-preview",
|
||||
# Assuming these are the models supported by Anthropics that you wish to include
|
||||
ANTHROPIC_POSSIBLE_MODELS = [
|
||||
"claude-2.1",
|
||||
# Add more models as needed
|
||||
]
|
||||
|
||||
class OpenaiLLMEngine(BaseLLMEngine):
|
||||
class AnthropicsLLMEngine(BaseLLMEngine):
|
||||
num_options = 1
|
||||
name = "OpenAI"
|
||||
description = "OpenAI language model engine."
|
||||
name = "Anthropics"
|
||||
description = "Anthropics language model engine."
|
||||
|
||||
def __init__(self, options: list) -> None:
|
||||
self.model = options[0]
|
||||
self.client = anthropic.Anthropic(api_key="YourAnthropicAPIKeyHere") # Ensure API key is securely managed
|
||||
super().__init__()
|
||||
|
||||
def generate(self, system_prompt: str, chat_prompt: str, max_tokens: int = 512, temperature: float = 1.0, json_mode: bool= False, top_p: float = 1, frequency_penalty: float = 0, presence_penalty: float = 0) -> str:
|
||||
response = openai.chat.completions.create(
|
||||
model=self.model,
|
||||
|
||||
def generate(self, system_prompt: str, chat_prompt: str, max_tokens: int = 1024, temperature: float = 1.0, json_mode: bool = False, top_p: float = 1, frequency_penalty: float = 0, presence_penalty: float = 0) -> str | dict:
|
||||
# Note: Adjust the parameters as per Anthropics API capabilities
|
||||
message = self.client.messages.create(
|
||||
max_tokens=max_tokens,
|
||||
messages=[
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": chat_prompt},
|
||||
],
|
||||
max_tokens=max_tokens,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
frequency_penalty=frequency_penalty,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format={ "type": "json_object" } if json_mode else openai._types.NOT_GIVEN
|
||||
model=self.model,
|
||||
)
|
||||
return response.choices[0].message.content if not json_mode else orjson.loads(response.choices[0].message.content)
|
||||
|
||||
return message.content
|
||||
|
||||
@classmethod
|
||||
def get_options(cls) -> list:
|
||||
return [
|
||||
gr.Dropdown(
|
||||
label="Model",
|
||||
choices=OPENAI_POSSIBLE_MODELS,
|
||||
choices=ANTHROPIC_POSSIBLE_MODELS,
|
||||
max_choices=1,
|
||||
value=OPENAI_POSSIBLE_MODELS[0]
|
||||
value=ANTHROPIC_POSSIBLE_MODELS[0]
|
||||
)
|
||||
]
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user