Formatting

This commit is contained in:
2024-02-15 17:54:13 +01:00
parent a32f339981
commit 45a48cfa49

View File

@@ -7,52 +7,53 @@ from abc import ABC, abstractmethod
from ..BaseEngine import BaseEngine
class Word(TypedDict):
start: str
end: str
text: str
class BaseTTSEngine(BaseEngine):
class BaseTTSEngine(BaseEngine):
@abstractmethod
def synthesize(self, text: str, path: str) -> str:
pass
def time_with_whisper(self, path: str) -> list[Word]:
"""
Transcribes the audio file at the given path using a pre-trained model and returns a list of words.
"""
Transcribes the audio file at the given path using a pre-trained model and returns a list of words.
Args:
path (str): The path to the audio file.
Args:
path (str): The path to the audio file.
Returns:
list[Word]: A list of Word objects representing the transcribed words.
Example:
```json
[
{
"start": "0.00",
"end": "0.50",
"text": "Hello"
},
{
"start": "0.50",
"end": "1.00",
"text": "world"
}
]
```
"""
device = "cuda" if is_available() else "cpu"
audio = wt.load_audio(path)
model = wt.load_model("tiny", device=device)
Returns:
list[Word]: A list of Word objects representing the transcribed words.
Example:
```json
[
{
"start": "0.00",
"end": "0.50",
"text": "Hello"
},
{
"start": "0.50",
"end": "1.00",
"text": "world"
}
]
```
"""
device = "cuda" if is_available() else "cpu"
audio = wt.load_audio(path)
model = wt.load_model("tiny", device=device)
result = wt.transcribe(model=model, audio=audio)
results = [word for chunk in result for word in chunk["words"]]
for result in results:
# Not needed for the current use case
del result["confidence"]
return results
result = wt.transcribe(model=model, audio=audio)
results = [word for chunk in result for word in chunk["words"]]
for result in results:
# Not needed for the current use case
del result["confidence"]
return results
def force_duration(self, duration: float, path: str):
"""
@@ -70,8 +71,10 @@ class BaseTTSEngine(BaseEngine):
if audio_clip.duration > duration:
speed_factor = audio_clip.duration / duration
new_audio = audio_clip.fx(mp.vfx.speedx, speed_factor, final_duration=duration)
new_audio = audio_clip.fx(
mp.vfx.speedx, speed_factor, final_duration=duration
)
new_audio.write_audiofile(path, codec='libmp3lame')
new_audio.write_audiofile(path, codec="libmp3lame")
audio_clip.close()