Files
viralfactory/src/engines/TTSEngine/BaseTTSEngine.py

95 lines
2.8 KiB
Python
Raw Normal View History

import moviepy.editor as mp
2024-02-15 14:11:16 +01:00
import whisper_timestamped as wt
from typing import TypedDict
from torch.cuda import is_available
2024-02-13 14:15:27 +01:00
from abc import ABC, abstractmethod
2024-02-15 14:11:16 +01:00
2024-02-13 14:15:27 +01:00
from ..BaseEngine import BaseEngine
2024-02-15 17:54:13 +01:00
2024-02-15 14:11:16 +01:00
class Word(TypedDict):
start: str
end: str
text: str
2024-02-13 14:15:27 +01:00
2024-02-15 17:54:13 +01:00
class BaseTTSEngine(BaseEngine):
2024-02-13 14:15:27 +01:00
@abstractmethod
def synthesize(self, text: str, path: str) -> list[Word]:
2024-02-14 17:49:51 +01:00
pass
2024-02-20 14:47:54 +01:00
def remove_punctuation(self, text: str) -> str:
return text.translate(str.maketrans("", "", ".,!?;:"))
def fix_captions(self, script: str, captions: list[Word]) -> list[Word]:
script = script.split(" ")
new_captions = []
for i, word in enumerate(script):
original_word = self.remove_punctuation(word.lower())
stt_word = self.remove_punctuation(word.lower())
if stt_word in original_word:
captions[i]["text"] = word
new_captions.append(captions[i])
2024-02-20 14:47:54 +01:00
# elif there is a word more in the stt than in the original, we
2024-02-15 17:54:13 +01:00
2024-02-15 14:11:16 +01:00
def time_with_whisper(self, path: str) -> list[Word]:
2024-02-15 17:54:13 +01:00
"""
Transcribes the audio file at the given path using a pre-trained model and returns a list of words.
Args:
path (str): The path to the audio file.
Returns:
list[Word]: A list of Word objects representing the transcribed words.
Example:
```json
[
{
"start": "0.00",
"end": "0.50",
"text": "Hello"
},
{
"start": "0.50",
"end": "1.00",
"text": "world"
}
]
```
"""
device = "cuda" if is_available() else "cpu"
audio = wt.load_audio(path)
model = wt.load_model("small", device=device)
2024-02-15 17:54:13 +01:00
result = wt.transcribe(model=model, audio=audio)
results = [word for chunk in result["segments"] for word in chunk["words"]]
2024-02-15 17:54:13 +01:00
for result in results:
# Not needed for the current use case
del result["confidence"]
return results
2024-02-15 14:11:16 +01:00
def force_duration(self, duration: float, path: str):
2024-02-15 14:11:16 +01:00
"""
Forces the audio clip at the given path to have the specified duration.
Args:
duration (float): The desired duration in seconds.
path (str): The path to the audio clip file.
Returns:
None
"""
audio_clip = mp.AudioFileClip(path)
2024-02-15 17:54:13 +01:00
if audio_clip.duration > duration:
speed_factor = audio_clip.duration / duration
2024-02-15 17:54:13 +01:00
new_audio = audio_clip.fx(
mp.vfx.speedx, speed_factor, final_duration=duration
)
new_audio.write_audiofile(path, codec="libmp3lame")
audio_clip.close()